Friday, December 6, 2019

Fusion Essay Example For Students

Fusion Essay Fusion reactions are inhibited by the electrical repulsive force that acts between two positively charged nuclei. For fusion to occur, the two nuclei must approach each other at high speed to overcome the electrical repulsion and attain a sufficiently small separation (less than one-trillionth of a centimeter) that the short-range strong nuclear force dominates. For the production of useful amounts of energy, a large number of nuclei must under go fusion: that is to say, a gas of fusing nuclei must be produced. In a gas at extremely high temperature, the average nucleus contains sufficient kinetic energy to undergo fusion. Such a medium can be produced by heating an ordinary gas of neutral atoms beyond the temperature at which electrons are knocked out of the atoms. The result is an ionized gas consisting of free negative electrons and positive nuclei. This gas constitutes a plasma. Plasma, in physics, is an electrically conducting medium in which there are roughly equal numbers of positively and negatively charged particles, produced when the atoms in a gas become ionized. It is sometimes referred to as the fourth state of matter, distinct from the solid, liquid, and gaseous states. When energy is continuously applied to a solid, it first melts, then it vaporizes, and finally electrons are removed from some of the neutral gas atoms and molecules to yield a mixture of positively charged ions and negatively charged electrons, while overall neutral charge density is maintained. When a significant portion of the gas has been ionized, its properties will be altered so substantially that little resemblance to solids, liquids, and gases remains. A plasma is unique in the way in which it interacts with itself with electric and magnetic fields, and with its environment. A plasma can be thought of as a collection of ions, electrons, neutral atoms and molecules, an photons in which some atoms are being ionized simultaneously with other electrons recombining with ions to form neutral particles, while photons are continuously being produced and absorbed. Scientists have estimated that more than 99 percent of the matter in the universe exists in the plasma state. All of the observed stars, including the Sun, consist of plasma, as do interstellar and interplanetary media and the outer atmospheres of the planets. Although most terrestrial matter exists in a solid, liquid or gaseous state, plasma is found in lightning bolts and auroras, in gaseous discharge lamps (neon lights), and in the crystal structure of metallic solids. Plasmas are currently being studied as an affordable source of clean electric power from thermonuclear fusion reactions. The scientific problem for fusion is thus the problem of producing and confining a hot, dense plasma. The core of a fusion reactor would consist of burning plasma. Fusion would occur between the nuclei, with electrons present only to maintain macroscopic charge neutrality. Stars, including the Sun, consist of plasma that generates energy by fusion reactions. In these ?natural fusion reactors? the reacting, or burning, plasma is confirmed by its own gravity. It is not possible to assemble on Earth a plasma sufficiently massive to be gravitationally confined. The hydrogen bomb is an example of fusion reactions produced in an uncontrolled, unconfined manner in which the energy density is so high that the energy release is explosive. By contrast, the use of fusion for peaceful energy generating requires control and confinement of a plasma at high temperature and is often called controlled thermonuclear fusion. In the development of fusion power technology, demonstration of ? energy breakeven? is taken to signify the scientific feasibility of fusion. At breakeven, the fusion power produced by a plasma is equal to the power input to maintain the plasma. This requires a plasma that is hot, dense, and well confined. The temperature required, about 100 million Kelvins, is several times that of the Sun. The product of the density and energy confinement time of the plasma (the time it takes the plasma to lose its energy if not replaced) must exceed a critical value. There are two main approaches to controlled fusion ? namely, magnetic confinement and inertial confinement. Magnetic confinement of plasmas is the most highly developed approach to controlled fusion. The hot plasma is contained by magnetic forces exerted on the charged particles. A large part of the problem of fusion has been the attainment of magnetic field configurations that effectively confine the plasma. A successful configuration must meet three criteria: (1) the plasma must be in a time-independent equilibrium state, (2) the equilibrium must be macroscopically stable, and (3) the leakage of plasma energy to the bounding wall must be small. A single charged particle tends to spiral about a magnetic line of force. It is necessary that the single particle trajectories do not intersect the wall. Moreover, the pressure force, arising from the thermal energy of all the particles, is in a direction to expand the plasma. For the plasma to be in equilibrium, the magnetic force acting on the electric current within the plasma must balance the pressure force at every point in the plasma. The equilibrium thus obtained has to be stable. A plasma is stable if after a small perturbation it returns to its original state. A plasma is continually perturbed by random thermal noise fluctuations. If unstable, it might depart from its equilibrium state and rapidly escape the confines of the magnetic field (perhaps in less than one-thousandth of a second). A plasma in stable equilibrium can be maintained indefinitely if the leakage of energy from the plasma is balanced by energy input. If the plasma energy loss is too large, then ignition cannot be achieved. An unavoidable diffusion of energy across the magnetic field lines will occur from the collisions between the particles. Exemplification: Separation of Church and State Essay Neutron bombardment would activate the walls of the containment vessel, but such activated material is shorter-lived and less toxic than the waste products of a fission reactor. Moreover, even this activation problem may be eliminated, either by the development of advanced, low-activation materials, such as vanadium-based materials, or by the employment of advanced fusion-fuel cycles that do not produce neutrons, such as the fusion of deuterons with helium-3 nuclei. Nearly neutron-free fusion systems, which require higher temperatures than D-T fusion, might make up a second generation of fusion reactors). Finally, a fusion reactor would not release the gaseous pollutants that accompany the combustion of fossil fuels; hence, fusion would not produce a greenhouse effect. The fusion process has been studied as part of nuclear physics for much of the 20th century. In the late 1930s the German-born physicist Hans A. Bethe first recognized that the fusion of hydrogen nuclei to form deuterium is exoergic (there is release of energy) and, together with subsequent reactions, accounts for the energy source in stars. Work proceeded over the next two decades, motivated by the need to understand nuclear matter and forces, to learn more about the nuclear physics of stellar objects, and to develop thermonuclear weapons (the hydrogen bomb) and predict their performance. During the late 1940s and early 1950s, research programs in the United States, United Kingdom, and Soviet Union began to yield a better understanding of nuclear fusion, and investigators embarked on ways of exploiting the process for practical energy production. This work focused on the use of magnetic fields and electromagnetic forces to contain extremely hot gases called plasmas. A plasma consists of unbound electrons and positive ions whose motion is dominated by electromagnetic interactions. It is the only state of matter in which thermonuclear reactions can occur in a self-sustaining manner. Astrophysics and magnetic fusion research, among other fields, require extensive knowledge of how gases behave in the plasma state. The inadequacy of the then-existent knowledge became clearly apparent in the 1950s as the behavior of plasma in many of the early magnetic confinement systems proved too complex to understand. Moreover, researchers found that confining fusion plasma in a magnetic trap was far more challenging than they had anticipated. Plasma must be heated to tens of millions of degrees Kelvin or higher to induce and sustain the thermonuclear reaction required to produce usable amounts of energy. At temperatures this high, the nuclei in the plasma move rapidly enough to overcome their mutual repulsion and fuse. It is exceedingly difficult to contain plasmas at such a temperature level because the hot gases tend to expand and escape from the enclosing structure. The work of the major American, British, and Soviet fusion programs was strictly classified until 1958. That year, research objectives were made public, and many of the topics being studied were found to be similar, as were the problems encountered. Since that time, investigators have continued to study and measure fusion reactions between the lighter elements and have arrived at more accurate determinations of reaction rates. Also, the formulas developed by nuclear physicists for predicting the rate of fusion-energy generation have been adopted by astrophysicists to derive new information about the structure of the stellar interior and about the evolution of stars. The late 1960s witnessed a major advance in efforts to harness fusion reactions for practical energy production: the Soviets announced the achievement of high plasma temperature (about 3,000,000 K), along with other physical parameters, in a tokamak, a toroidal magnetic confinement system in which the plasma is kept generally stable both by an externally generated, doughnut-shaped magnetic field and by electric currents flowing within the plasma itself. (The basic concept of the tokamak had been first proposed by Andrey D. Sakharov and Igor Y. Tamm around 1950.) Since its development, the tokamak has been the focus of most research, though other approaches have been pursued as well. Employing the tokamak concept, physicists have attained conditions in plasmas that approach those required for practical fusion-power generation. Work on another major approach to fusion energy, called inertial confinement fusion (ICF), has been carried on since the early 1960s. Initial efforts were undertaken in 1961 with a then-classified proposal that large pulses of laser energy could be used to implode and shock-heat matter to temperatures at which nuclear fusion would be vigorous. Aspects of inertial confinement fusion were declassified in the 1970s, but a key element of the workspecifically the design of targets containing pellets of fusion fuelsstill is largely secret. Very painstaking work to design and develop suitable targets continues today. At the same time, significant progress has been made in developing high-energy, short-pulse drivers with which to implode millimeter-radius targets. The drivers include both high-power lasers and particle accelerators capable of producing beams of high-energy electrons or ions. Lasers that produce more than 100,000 joules in pulses on the order of one nanosecond (10-9 second) have been developed, and the power available in short bursts exceeds 1014 watts. Best estimates are that practical inertial confinement for fusion energy will require either laser or particle-beam drivers with an energy of 5,000,000 to 10,000,000 joules capable of delivering more than 1014 watts of power to a small target of deuterium and tritium .

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.